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Abstract. It was proved in Jongen and Pallaschke (1988) that every piecewise smooth Morse func-
tion f defined on an open subset of IRn can be represented in suitable coordinates in the neighborhood
of a nondegenerate critical point as f �x0�+l�y1�			�yk�−

∑k+�
i=k+1y

2
i +
∑n

j=k+�+1y
2
j � where the

piecewise linear function l∈CS�y1�			�yk�−
∑k

i=1yi� is a continuous selection of the coordinate
functions y1�			�yk and their negative sum −∑k

i=1yi	 In this paper we study a collection of cones
in IRk on which the functions l∈CS�y1�			�yk�−

∑k
i=1yi� are linear. This collection of cones

forms a complete polyhedral fan and will be called the Morse fan. It is shown that Morse fan is a
refinement of the normal fan of the polytope�P which is the Minkowski sum of two pyramids � and
−� , where �=conv�e1�			�ek�−

∑k
i=1ei� is the convex hull of the unit vectors e1�			�ek∈ IRk

and their negative sum.
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1. Introduction

Let U ⊆ IRn be an open subset and f �f1�			�fm �M−→ IR be continuous
functions. If I�x�=�i∈�1�			�m��fi�x�=f �x�� is nonempty at every point
x∈U , then f is called a continuous selection of the functions f1�			�fm. We denote
by CS�f1�			�fm� the set of all continuous selections of f1�			�fm. The set I�x�
is called the active index set of f at the point x. Typical examples for continuous
selections are the functions

fmax=max�f1�			�fm�� fmin=min�f1�			�fm�

or more generally any function obtained from f1�			�fm by exploiting finitely many
times the operation of taking maximum or minimum.
The notion of a nondegenerate critical point for a continuous selections of C2-

functions has been defined in Jongen and Pallaschke (1988) and the following gen-
eralization of the second Morse Lemma for a continuous selection of C2-functions
was proved:
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THEOREM 1.1 Let U ⊆ IRn be an open subset, f1�			�fm �U −→ IR be
twice continuously differentiable functions, and let x0∈U be a nondegenerate
critical point of f ∈CS�f1�			�fm�. Then f is locally topologically equivalent in
a neighborhood of x0 to a function of the form

f �x0�+l�y1�			�yk�−
k+�∑
i=k+1

y2i +
n∑

j=k+�+1
y2j �

with k=�Î �x0��−1� where Î �x0�=�j∈ I�x0��x∈cl�int��z�f �z�=fj�z����� is the
essential active index set, l∈CS�y1�			�yk�−

∑k
i=1yi�� and � the quadratic index

of f at x0.

FormoredetailsseeJongenetal. (2000), JongenandPallaschke(1988)andAgrachev
et al. (1997). The following theorem was proved by Bartels et al. (1995) (see also
Melzer, 1986):

THEOREM 1.2 Let l∈CS�l1�			�lm+1� be a continuous selection of the functions
li�y�=yi for i∈�1�			�m� and lm+1�y�=−∑m

i=1yi with y=�y1�			�ym�∈ IRm	
Then the following statements hold:

(i) l has a unique max-min representation

l�x�= max
i∈�1�			�r�

min
j∈Mi

lj�x��

where the index sets M1�			�Mr with Mi⊆�1�			�m+1� are such that Mi⊆
Mj if and only if i=j.

(ii) l is representable as the difference of two sublinear functions:

l�x�= max
i∈�1�			�r�

min
j∈Mi

lj�x�= max
i∈�1�			�r�

�
r∑
k=1
k 	=i

max
j∈Mk

−lj�x��−
r∑
k=1
max
j∈Mk

−lj�x�	

For applications to nonsmooth optimization we refer to Demyanov and Ru-
binov (1986), Jongen, Jonker et al. (2000), Pallaschke and Rolewicz (1997) and
Pallaschke and Urbański (2000).

2. The Morse Fan

For a nonempty set Z⊂ IRn the set of all nonnegative linear combinations

�=
{

r∑
i=1
aizi � ai∈ IR and ai�0� zi∈Z�i∈�1�			�r��r ∈ IN

}
⊂ IRn

is called the cone determined by Z	 If the set Z=�z1�			�zr� is finite then � is
called a polyhedral cone determined by z1�			�zr ∈ IRn	 For a cone �⊂ IRn we call
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a cone �⊂� a face of � if for every x�y∈� and some t∈�0�1� the condition
tx+�1−t�y∈� implies that x�y∈�	 Note that for every cone � the apex �0�
and the cone � itself are faces of � .
A fan in IRn is a finite collection

 =��1�			��s�

of nonempty cones with the following properties:
(i) Every face of � ∈ is again an element of  .
(ii) The intersection �∩� ′ of any two cones �� � ′ ∈ is a face of both � and � ′.
A fan  =��1�			��s� in IRn is called polyhedral if each of its cones is a poly-

hedral cone, simplicial if each of its cones is the nonnegative linear combination of

linearly independent vectors and complete if its cones cover IRn� i.e.,
s⋃
i=1
�i= IRn	

For more details see Ewald (1996).
In Bartels et al. (1995) a collection of cones in IRn on which every l∈CS�y1�			�

yn�−
∑n

i=1yi� is linear has been studied. This cones are constructed in the follow-
ing way: Put li�x�=xi for i∈�1�			�n� and ln+1�x�=−∑n

i=1xi� with x∈ IRn
and denote by "n+1 the set of all permutations of the numbers 1�			�n+1	 For a
permutation #∈"n+1 the set

�#=�x∈ IRn � l#�1��x�� l#�2��x�� ···� l#�n+1��x��
is a cone, called permutation cone. It has been shown in Bartels et al. (1995), that
all cones �# have nonempty interiors. Furthermore note that

⋃
#∈"n+1�#= IRn	

Now we define the Morse fan

 n=��⊂ IRn � � is a face of �#� #∈"n+1�

as the collection of all faces of the above defined permutation cones �# .
It follows immediately from the definition that  n is a complete fan in IR

n.
Minimal representations for the elements of CS�y1�y2�y3�−

∑3
i=1yi� as differ-

encesofsublinearfunctionsaregiveninGrzybowski,PallaschkeandUrbański(2000)
and the combinatorial Picard group of  n has been studied in Pallaschke and
Rolewicz (1999).

PROPOSITION 2.1 For every n∈ IN the fan  n has �2n+1−2� different one-
dimensional cones which are generated by the following vectors:

– 1 = �1�			�1� =
n∑
i=1
ei

– xM = −m1 + �n+1�∑
i∈M
ei for M⊆�1�		�n� and m=card M�1
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and its negatives, where “ card” denotes the cardinality of a set.
Proof. The one-dimensional cones of  n are contained in the solution spaces of

all subsystems of �n−1� equations of the from
xi=xj for i�j∈�1�			�n�� i < j

and

xi=−
n∑
j=1
xj for i∈�1�			�n��

which have full rank. If such a system of �n−1� linear equations is written in
matrix notation as Ax=0� then we have two types of row vectors in the matrix
A:

The row vector, which corresponds to the equation xi=xj for i<j� is of the
type:

a) �0�0�			�0�−1�0�			�1�0�0�0�
and the row vector, which corresponds to the equation xi=−

n∑
j=1
xj , is of the

type:
b) �−1�−1�			�−1�−2�−1�			�−1�−1�.
Since the difference of two row-vectors of type b) is a row-vector of type a), it

follows that an �n−1�n�-matrix A of arbitrary row-vectors of type a) and b) has
full rank if and only if no diagonal element is equal to 0	Hence, up to permutations
of variables and rows, we have to consider the following linear equations Ax=0	

Assume that the matrix A consists only of vectors of type b):

A=




−2 −1 −1 −1 −1 	 	 	 	 	 −1
−1 −2 −1 −1 −1 	 	 	 	 	 −1
−1 −1 −2 −1 −1 	 	 	 	 	 −1
	 	 	 	 	 	 	 	 	 	 	
−1 −1 	 	 −2 −1 	 	 	 	 −1
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
−1 −1 −1 −1 −1 −1 −1 −1 −1 −2 −1

	




Then the solution space of Ax=0 is

&�−1�−1�−1�			�−1�n�� &∈ IR�

and by permuting the variables x1�			�xn we get all n solutions.
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Assume that the matrix A consists of vectors of type b) and of exactly one
vector of type a). Since the difference of two vectors of type b) is a vector of
type a), we get up to permutation the matrix

A=




−2 −1 −1 −1 −1 	 	 	 	 	 −1
−1 −2 −1 −1 −1 	 	 	 	 	 −1
−1 −1 −2 −1 −1 	 	 	 	 	 −1
	 	 	 	 	 	 	 	 	 	 	
−1 −1 	 	 −2 −1 	 	 	 	 −1
	 	 	 	 	 	 	 	 	 	 	
−1 −1 −1 −1 −1 −1 −1 −1 −2 −1 −1
0 0 0 0 0 0 0 0 0 −1 1




In this case the solution space of Ax=0 is
&�−2�−2�−2�			�−2�n−1�n−1�� &∈ IR�

and by permuting the variables x1�			�xn we get all �
n
2� solutions.

If we continue in this way then we get, up to permutations, the solution spaces:

&�−3�−3�−3�			�−3�n−2�n−2�n−2�n−2� � &∈ IR
&�−4�−4�−4�			�−4�n−3�n−3�n−3�n−3� � &∈ IR

·
·

&�−n+1�2�2�			�2 � 2 � 2 � 2 � 2� � &∈ IR	
If the matrix consists only of row-vectors of type a) and has full rank, then there
exists a permutation such that all elements in the diagonal are −1� hence

A=




−1 0 0 0 	 	 1 	 	 	 	 0
0 −1 −1 0 0 	 	 	 1 	 	 0
0 0 0 −1 1 	 	 	 	 	 	 0
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
0 0 0 0 0 0 	 	 	 	 −1 1




and the solution space is

&�1�1�1�			�1�� &∈ IR�
which proves the proposition. �

REMARK 2.2 It follows from Proposition 2.1 that the Morse fan  n is a poly-
hedral fan, because  n has only finitely many one-dimensional cones and every
cone of  n is the nonnegative linear combination of vectors which generate the
one-dimensional cones.
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3. The Configuration Polytope

Let M⊂�1�			�n� be a set with cardinality m with 1� m�n	 Then we define

aM=�a1�			�an�=−m1+�n+1�∑
j∈M
ej

where ei∈ IRn is the i-th unit vector and 1=∑n
i=1ei	 Observe that ai=−m for

the components i∈�1�			�n�\M and that ai=n+1−m for i∈M	

Let us put

� =�a∈ IRn � there exits M⊂�1�			�n� with a=aM or a=−aM�	
Now we put

�=conv�e1�			�en�−
n∑
i=1
ei�⊂ IRn

and call
�P=�x∈ IRn � �a�x��n+1 with a∈� �

the configuration polytope, where �·�·� denotes the inner product in IRn	

Now the following statement holds:

PROPOSITION 3.1 Let X be a Hausdorff topological vector space and let A�B
be closed convex subsets of X such that 0∈ intA and A⊂B	 If the boundary )B
contains )A then A=B	
Proof. Let us assume that x∈B\A	 Then there exists the greatest &∈�0�1�

such that &x∈A	 Then &x∈)A⊂)B	
On the other hand, there exists a neighborhood U of 0 which is contained in B.

Then &x+�1−&�U ⊂B is a neighborhood of &x and &x∈ intB	 Hence x 	∈B
which contradicts our assumption. �

REMARK 3.2 Let

f � IRn−→ IR�f �x�=max��a�x��a∈� �	

Then
�P=�x �f �x��n+1� and )�P=�x � f �x�=n+1�	

This remark is trivial. The second equality follows from the fact that f �0�=0	

THEOREM 3.3 For the configuration polytope holds:

�P=� − �	



A GEOMETRIC REPRESENTATION OF THE MORSE FAN 325

Proof. Let us first prove that �−�⊆�P holds. Therefore let us notice that �−�
=conv(�ei − ej � i�j ∈ �1�			�n��i 	= j�∪ �1 + ei � i = 1�			�n� ∪ �−1 − ei � i =
1�			�n�

)
.

Now let M⊂�1�			�n� with card�M�=m	 If i∈M then �aM�ei�=n+1−m	
If i�M then �aM�ei�=−m	 Also �aM�−1�=−m	 Therefore, �aM�ei−ej�∈
�0�n+1�−n−1� for all M⊂�1�			�n�	

Moreover, �aM�1+ei�∈�0�n+1� and �aM�−1−ei�∈�0�−n−1�	

Hence for all a∈� and all vertices b of �−���a�b�∈�0�n+1�−n−1�	
Therefore �−�⊂�P	

Now we prove the reverse inclusion: Let A�B be faces of �	 Let A=conv
�a1�			�ap� and B=conv�b1�			�bq� where ai�bi∈�e1�			�en�−1�	 If ai=bj for
some i�j then 0∈A−B	 Since 0∈ int��−�� then A−B is not a face of �−�	

Let us assume that

�a1�			�ap�∩�b1�			�bq�=∅� �a1�			�ap�∪�b1�			�bq�=�e1�			�en�−1��

andbq=−1	

Let us denote, only for this part of the proof, the set �i∈�1�			�n� � ei∈
�a1�			�ap�� by � 	 Then �aJ �ai�=n+1−p�i=1�			�p and �aJ �bi�=
−p, i∈ �1�			�q�	 Since A−B= conv�ai−bj � i∈�1�			�p�; j= 1�			�q�
and �aJ �ai−bj�= n+1 then �aJ �x�=n+1�x∈A−B and f �x��
n+1�x∈A−B	 Each face C of �−� is a Minkowski sum of faces of �
and −�	 Then C is contained in some A−B or B−A which was described
above. Hence f �x��n+1�x∈C	 But according to Proposition 3.1 and Remark
3.3 f �x�=n+1�x∈C	 The boundary )��−�� is the union of all faces of
�−� which implies that )��−��⊂)�P and, according to Proposition 3.2,
�P=�−� . �

Next we prove several elimination rules for the constraints of �P	

PROPOSITION 3.4 Let x0 = �x01, 			 , x
0
n) ∈ �P = �x ∈ IRn ��a�x� � n + 1

with a∈� � be a feasible point of the configuration polytope. Then the following
properties hold:
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(i) If for two sets K�M⊂�1�			�n� with 1�k=card�K��m=card�M��
�n−1� the relations

−k
n∑
i=1
x0i + �n+1�∑

i∈K
x0i = n+1�

−m
n∑
i=1
x0i + �n+1�∑

i∈M
x0i = n+1

hold, then K∩ M 	=∅ and

−r
n∑
i=1
x0i + �n+1� ∑

i∈K∩M
x0i = n+1�

−�k+m−r�
n∑
i=1
x0i + �n+1� ∑

i∈K∪M
x0i = n+1

with r=card�K∩ M�	

(ii) If for two sets K�M⊂�1�			�n� with 1�k=card�K��m=card�M��
�n−1� and K∩ M 	=∅ the relations

−k
n∑
i=1
x0i + �n+1�∑

i∈K
x0i = n+1�

m
n∑
i=1
x0i − �n+1�∑

i∈M
x0i = n+1

hold, then

−�k−r�
n∑
i=1
x0i + �n+1� ∑

i∈K\M
x0i = n+1�

�m−r�
n∑
i=1
x0i − �n+1� ∑

i∈M\K
x0i = n+1

with r=card�K∩ M�	

(iii) If for an index i∗ ∈�1�			�n� the constraint

n∑
i=1
x0i − �n+1�x0i∗ = n+1
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is satisfied, then for all subsets M⊂�1�			�n� with 2�m=card�M��
�n−1� and i∗ ∈ m the strict inequality

−m
n∑
i=1
x0i + �n+1�∑

i∈M
x0i < n+1

holds.

(iv) If the constraint
n∑
i=1
x0i = n+1 is satisfied, then for all subsets M⊂

�1�			�n� with 2�m=card�M���n−1� the strict inequality

m
n∑
i=1
x0i − �n+1�∑

i∈M
x0i < n+1

holds.

REMARK 3.5 Observe that conditions similar to (i) and (iii)-vi) hold if the con-
straints of the type

−k
n∑
i=1
x0i + �n+1�∑

i∈K
x0i = n+1

are replaced by constraints of the type

k
n∑
i=1
x0i − �n+1�∑

i∈K
x0i = n+1

and
n∑
i=1
x0i = n+1 by the constraint −

n∑
i=1
x0i = n+1	

Proof. Let us assume that x0∈�P is a feasible point and that:
(i) for two sets K�M⊂�1�			�n� with 1�k=card�K��m=card�M��

�n−1� the relations

−k
n∑
i=1
x0i + �n+1�∑

i∈K
x0i = n+1�

−m
n∑
i=1
x0i + �n+1�∑

i∈M
x0i = n+1

hold. Adding both equations gives:

−�k+m�
n∑
i=1
x0i +2�n+1�

∑
s∈K∩M

x0s+�n+1�
∑

m∈ M\K
x0m+�n+1�

∑
k∈K\M

x0k=2�n+1�	
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Now assume that K∩M=∅	 Then we get

−�k+m�
n∑
i=1
x0i +�n+1�

∑
m∈ M∪K

x0m=2�n+1�

and this is not possible for a feasible point. Hence K∩ M 	=∅	
If we put r=card�K∩ M� then:

2�n+1� =−�k+m�
n∑
i=1
x0i +2�n+1�

∑
s∈K∩M

x0s

+�n+1� ∑
m∈ M\K

x0m+�n+1�
∑

k∈K\M
x0k

=−r
n∑
i=1
x0i + �n+1� ∑

i∈K∩M
x0i

−�k+m−r�
n∑
i=1
x0i + �n+1� ∑

i∈K∪M
x0i

Since both summands are active hyperplanes in x0∈�P we get:

−r
n∑
i=1
x0i + �n+1� ∑

i∈K∩M
x0i = n+1

−�k+m−r�
n∑
i=1
x0i + �n+1� ∑

i∈K∪M
x0i = n+1

(ii) for two sets K�M⊂�1�			�n� with 1�k=card�K��m=card�M��
�n−1� and K∩ M 	=∅ the relations

−k
n∑
i=1
x0i + �n+1�∑

i∈K
x0i = n+1�

m
n∑
i=1
x0i − �n+1�∑

i∈M
x0i = n+1
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hold. Since the relations

−k
n∑
i=1
x0i +�n+1�

∑
i∈K
x0i = −k ∑

i∈�1�		�n�\K
x0i

+ �n+1−k�∑
i∈K
x0i �

m
n∑
i=1
x0i −�n+1�

∑
i∈M
x0i =−�n+1−m�∑

i∈M
x0i

+ m
∑

i∈�1�		�n�\M
x0i

hold, we have for r=card�K∩ M��

�m−k�
n∑
i=1
x0i + �n+1�

(∑
i∈K
x0i −

∑
i∈M
x0i

)

= �m−k� ∑
i∈�1�			�n�\�K∪ M�

x0i +1�n+1�+�m−k�2 ∑
i∈�K\ M�

x0i

+1−�n+1�+�m−k�2 ∑
i∈�M\K�

x0i +r
∑

i∈�K∩ m�

x0i

= −�k−r�
n∑
i=1
x0i +�n+1�

∑
i∈K\M

x0i

+�m−r�
n∑
i=1
x0i −�n+1�

∑
i∈M\K

x0i 	

Since the last two summands are active hyperplanes in x0∈�P it follows that

−�k−r�
n∑
i=1
x0i +�n+1�

∑
i∈K\M

x0i = n+1�

�m−r�
n∑
i=1
x0i −�n+1�

∑
i∈M\K

x0i = n+1

holds with r=card�K∩ M�.

iv) the constraint
n∑
i=1
x0i =n+1 is satisfied.
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Let us furthermore assume that for a subset M⊂�1�			�n� with 2�m=
card�M���n−1� the equation

m
n∑
i=1
x0i −�n+1�

∑
i∈M
x0i =n+1

holds. Then the sum of the two equations

n∑
i=1
x0i = n+1�

m
n∑
i=1
x0i − �n+1�∑

i∈M
x0i = n+1

gives:

�m+1� ∑
i∈�1�			�n�\M

x0i − �n−m�∑
i∈M
x0i = 2�n+1�

which is a contradiction, since

�m+1� ∑
i∈�1�			�n�\M

x0i − �n−m�∑
i∈M
x0i

= −�n−m�
n∑
i=1
x0i + �n+1� ∑

i∈�1�			�n�\M
x0i

is an active hyperplane at x0∈�P	 �

4. The Normal Fan of the Configuration Polytope

For a closed convex subset Q⊂ IRn let us denote by

pQ � IR
n−→Q with pQ�x�=�z∈Q � inf

q∈Q
�x−q�=�z−x��

the metric projection onto Q with respect to a norm �·� on IRn	 We will assume
that �·� is the Euclidean norm on IRn	 Then the metric projection is a single valued
mapping, because the Euclidean norm is strictly convex.
For a closed convex subset Q⊂ IRn and x∈Q we denote by

N�x�=−x+p−1
Q �x�
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the normal cone of Q at x and by

 �Q�=�� � � is a face of N�x�� x∈Q�

the normal fan of Q	

PROPOSITION 4.1 The normal fan  ��P� of the configuration polytope
�P=�−� consists of the following cones �x together with its faces for the fol-
lowing points x∈�P:
(i) For x=ei−ej ∈�P

the cone is �x=conv�a∈� � lj�a�<li�a��	
(ii) For x=∑n

j=1ej+ei∈�P
the cone is �x=conv�a∈� � li�a�<ln+1�a��	

(iii) For x=−∑n
j=1ej−ei∈�P

the cone is �x=conv�a∈� � ln+1�a�<li�a��	
Here li�x�=xi for i∈�1�			�n� and ln+1�x�=−∑n

i=1xi with x=�x1�			�xn�∈
IRn	
Proof. The extreme points of �P are

ei−ej ∈�P� i�j∈�1�			�n� and i 	=j�
x=(∑n

j=1ej
)+ei∈�P� i∈�1�			�n��

x=−(∑n
j=1ej

)−ei∈�P� i∈�1�			�n�	
From Proposition 2.1 it follows that every extreme point of�P is the intersection of
2�n−1� distinct �n−1�-dimensional faces of �P	 For the extreme point ei−ej ∈�P
this �n−1�-dimensional faces are determined by the constraints

�a�ei−ej�=n+1� with a∈� 	

Now by Proposition 2.1 the conditions a∈� and �a�ei−ej�=n+1
are equivalent to a∈� and lj�a�<li�a�	 Since the normal cone of �P at ei−
ej ∈�P is the convex cone generated by the outer normal vectors of the adjacent
�n−1�-dimensional faces at ei−ej ∈�P it follows that N�ei−ej�=conv�a∈
� � lj�a�<li�a�� holds for the normal cone at ei−ej ∈�P	

Points (ii) and (iii) can be proved in the same way, because for all subsets M⊂
�1�			�n� with 1�m=card M and i∈M

�aM�z�=n+1
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holds with z=∑n
j=1ej+ei∈�P. �

Let  and  ′ be two fans in IRn	 Then  ′ is called a refinement of  if for every
� ∈ ′ there exists a � ∈ such that �⊆�	

THEOREM 4.2 The Morse fan  n is a refinement of the normal fan  ��P�	
Proof. Every cone with nonempty interior of  ��P� is of the form

�i�j=conv�a∈� � lj�a�<li�a�� for i�j∈�1�			�n�n+1� with i 	=j�

where li�x�=xi for i∈�1�			�n� and ln+1�x�=−∑n
i=1xi with x=�x1�			�xn�∈

IRn	

Now observe that every cone �i�j is the union of �n−1�! permutation cones
�#=�x∈ IRn � l#�1��x�� l#�2��x�� ···� l#�n+1��x��

for
#∈"i�j�n+1�=�5∈"�n+1� with 5�i�= i and 5�j�=j ��

i.e.
�i�j=

⋃
#∈"i�j �n+1�

�#	

Hence  n is a refinement of  ��P�. �

REMARK 4.3 For dimension n=2 the Morse fan  2 coincides with the fan
 ��P� in IR2	 For dimension n=3 the polytope �P⊂ IR3 has 12 normal cones
with nonempty interiors and each of this cones is the union of two permutation
cones of the Morse fan  3	 In general the polytope �P⊂ IRn has n�n+1� normal
cones with nonempty interiors and each of these cones is the union of �n−1�!
permutation cones of the Morse fan  n	
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